Bookmark


  • Page views 1031
  • PDF Downloads 63


ISSN: 2766-2276
> Medicine Group. 2021 Mar 18;2(3):178-184. doi: 10.37871/jbres1207.

 |   |   | 


open access journal Research Article

Calculation of Air Kerma of CT Contrast Agents and Painkiller

Saniye Tekerek*

Vocational School of Health Services, Kahramanmaraş Sutçu Imam University, Turkey
*Corresponding author: Saniye Tekerek, Vocational School of Health Services, Kahramanmaraş Sutçu Imam University, Turkey, ORCID ID: orcid.org/0000-0003-3326-358X; E-mail:
Received: 25 February 2021 | Accepted: 17 March 2021 | Published: 18 March 2021
How to cite this article: Tekerek S. Calculation of Air Kerma of CT Contrast Agents and Painkiller. J Biomed Res Environ Sci. 2021 Mar 18; 2(3): 178-184. doi: 10.37871/jbres1207, Article ID: JBRES1207
Copyright:© 2021 Tekerek S. Distributed under Creative Commons CC-BY 4.0.
Keywords
  • CT contrast agents
  • Mass attenuation coefficient
  • Kerma

In this study have investigated the mass attenuation coefficient and air Kerma of some CT contrast agents and painkiller. The mass attenuation coefficient and air Kerma of Iotrolan, Iodixanol, Iohexol, Ioxilan, Ioversol, Iomeprol, Ketoprofen, Flurbiprofen, Etodolac, İbuprofen, Meloxicam, Diflofenac and Aspirin have been calculated by using WinXCom in the energy range from 1 keV to 1000 keV. The current study would be useful to develop new shielding materials in radiation application fields.

Investigation of radiation effects on biologically important molecules is very important research in medicine and radiation biophysics. The study of radiation interactions with sample and the data on the attenuation of X and gamma-rays in biologically shielding and dosimetric materials assumed great significance by virtue of their various applications [1].

The results show that MAC is a useful physical quantity to determine the Kerma for compounds. Values of MAC depend on the chemical content of the investigated compounds. The photon interaction parameters were investigated to verify the applicability of the mixture rule over different samples in various energy.

The kerma vary markedly from sample to sample, with the highest values usually being for the lower atom masses. Gamma and X-rays are extensively used for diagnostics in nuclear medicine, CT scanning, gamma knife surgery, mammography, radiotherapy, radiology. As a consequence, various human tissues and biological material are exposed to high radiation. It is very important to know that how these material can be affected when exposed radiation [2]. Kerma is the sum of the Initial kinetic energies of all charged particles liberated by indirectly Ionizing particles in a small volume element of a specified material divided by the mass of material in that volume element [3].

The Mass Attenuation Coefficient (MAC) is a fundamental photon interaction property for calculation of shielding properties in biological materials [4], human body organs [5] and tissue substitutes [6] were investigated by different researchers. Some researchers studied Kerma values of various fatty acids and some carbohydrates [7], some vitamins in the energy range of 356.61-661.66-1250 and 1408.01 keV [8] photon kerma parameters for human body organs [4].

Our present investigation of MAC and Kerma of some contrast agents, and painkiller compounds for total radiation interaction processes should be useful to scientists. It is needed to know abouth the mass attenuation coefficient in order to calculate air Kerma of the compounds.

In this study air Kerma values was calculated for some medically important compounds. The MAC and Kerma are informed us abouth the caracteristic properties of some medical compounds. The aim of present investigation is to study the behavior of these compounds absorption parameters i.e. MAC (μ/ρ) and Kerma.

In medical imaging field, the knowledge about how the high energy beam interacts with CT agent compounds leads to progress the clinical diagnosis by the CT scan. The medical imaging field information about air Kerma the scattering radiation interacts in with medium can be guide progress the this field [5,9,10]. However, although the CT agents are part of imaging and dosimetre information such studies for Kerma values of this materials are less in literature. Consequently, investigation of the radiation interaction with these CT agents and painkiller have is to be reached. In the present work, the CT contrast agents and painkiller have been calculated for the first time in terms of the air Kerma.

The computed tomography investigation, a photon is sorption as it passes through a human body organ by CT agents.

This study was undertaken to obtain information on MAC and Kerma for some medical compounds. Values of MAC depend on the chemical content of the investigated compounds. This present parameters were investigated to verify the practicable of the mixture rule over different medical compounds in constant energy. MAC and air Kerma at high photon energy were investigated since compounds have grand scale application in the technology of medical and nuclear field.

The mass attenuation coefficients for any chemical compound are estimated using the elemental values the Bragg’s-rule formula [11].

Total MAC is calculated by equation [12].

μ ρ =  1 ρ  In( I 0 I ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaeiVdaWdaeaapeGaaeyWdaaacqGH9aqpcaqGGcWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaabg8aaaGaaeiOaiaabMeacaqGUbWaaeWaa8aabaWdbmaalaaapaqaa8qacaqGjbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaabMeaaaaacaGLOaGaayzkaaaaaa@44DF@

where (I) attenuation, (I0) unattenuation intensity, ρ (gr/cm3) is the density of the compounds.

Kerma is the ratio of air mass attenuation coefficient and compound mass attenuation coefficient to each other. The Kerma value of a compound relative to air was calculated using Formula 6:

Kerma= ( μ ρ ) compounds ( μ ρ ) air   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGlbGaaeyzaiaabkhacaqGTbGaaeyyaiabg2da9maalaaapaqaa8qadaqadaWdaeaapeWaaSGaa8aabaaccaWdbiab=X7aTbWdaeaapeGae8xWdihaaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaabogacaqGVbGaaeyBaiaabchacaqGVbGaaeyDaiaab6gacaqGKbGaae4CaaWdaeqaaaGcbaWdbmaabmaapaqaa8qadaWccaWdaeaapeGae8hVd0gapaqaa8qacqWFbpGCaaaacaGLOaGaayzkaaWdamaaBaaaleaapeGaaeyyaiaabMgacaqGYbaapaqabaaaaOWdbiaacckaaaa@53DC@

where; ( μ ρ ) compounds MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeWaaSGaa8aabaaccaWdbiab=X7aTbWdaeaapeGae8xWdihaaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaabogacaqGVbGaaeyBaiaabchacaqGVbGaaeyDaiaab6gacaqGKbGaae4CaaWdaeqaaaaa@444D@ is compound mass attenuation coefficient and ( μ ρ ) air MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeWaaSGaa8aabaaccaWdbiab=X7aTbWdaeaapeGae8xWdihaaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaabggacaqGPbGaaeOCaaWdaeqaaaaa@3E9F@ is air mass attenuation coefficient. The MAC is the amount of initial beam energy transferred to kinetic energy charged particules by radiation interaction. Energy mass attenuation coefficient related to air mass attenuation coefficient through the following relation Formula;

  μ en ρ = μ tr ρ ( 1 g ¯ )  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcWaaSaaa8aabaaccaWdbiab=X7aT9aadaWgaaWcbaWdbiaabwgacaqGUbaapaqabaaakeaapeGae8xWdihaaiabg2da9maalaaapaqaa8qacqWF8oqBpaWaaSbaaSqaa8qacaqG0bGaaeOCaaWdaeqaaaGcbaWdbiab=f8aYbaadaqadaWdaeaapeGaaGymaiabgkHiT8aaceWGNbGbaebaa8qacaGLOaGaayzkaaGaaeiOaaaa@49BE@

where ( μ tr ρ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqaaaaaaaaaWdbmaalaaapaqaaGGaa8qacqWF8oqBpaWaaSbaaSqaa8qacaqG0bGaaeOCaaWdaeqaaaGcbaWdbiab=f8aYbaaa8aacaGLOaGaayzkaaaaaa@3DAF@ is mass attenuation energy transferent coefficient

( μ en ρ ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaqaamaalaaapaqaaGGaa8qacqWF8oqBpaWaaSbaaSqaa8qacaqGLbGaaeOBaaWdaeqaaaGcbaWdbiab=f8aYbaaaiaawIcacaGLPaaaaaa@3D8D@ is mass attenuation energy absorption coefficient (cm2/g)

g ¯ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaceWGNbGbaebaaaa@3716@ : bremstrahlung fraction

For low atomic number samples and beam energies below 1 MeV, the bremsstrahlung fraction g≈0; (μen/ρ) ≈ (μtr/ρ) [13].

In this study, mass attenuation coefficients and air Kerma of CT agents and painkiller compounds have been investigated in the energy range between 1 keV and 1000 keV. The values of the MAC have been calculated by the WinXCom data programme. The values of air Kerma were calculated by using mass attenuation coefficient for each CT contrast agent and painkiller.

The mass attenuation coefficient was increased with the increasing iodine ratio in the CT contrast agents compounds as shown in table 1, this increment attributes to the high molecular weight of iodine compounds. Results shows that the fractional weight increases linearly with increasing I content.

Table 1: MAC of CT contrast agents compounds.
Energy
keV
Mass attenuation coefficient
(cm2/gr)
Iotrolan Iodixanol Iohexol Ioxilan Ioversol Iomeprol
1 5847 5958 5806 5455 5874 5972
1.5 2357 2413 2339 5208 2369 2418
2 1165 1196 1156 2386 1172 1198
3 418.1 430.5 414.7 1181 420.5 430.9
4 198.9 205.2 197.3 424.6 200.1 205.4
5 410.1 428.4 406.2 446.0 413.0 427.6
6 298.0 311.6 295.1 438.4 300.1 311.0
8 140.5 146.9 139.1 305.6 141.5 146.7
10 78.04 81.65 77.30 144.1 78.60 81.48
15 26.43 27.650 26.170 80.070 26.620 27.59
20 12.23 12.790 12.110 27.120 12.310 12.76
30 4.172 4.360 4.134 12.540 4.201 4.350
40 10.47 10.970 10.370 17.380 10.550 10.95
50 5.879 6.157 5.824 10.760 5.921 6.142
60 3.648 3.818 3.615 6.037 3.674 3.809
80 1.735 1.811 1.720 3.745 1.747 1.807
100 0.995 1.036 0.987 1.779 1.001 1.034
150 0.403 0.415 0.400 1.018 0.405 0.415
200 0.241 0.246 0.240 0.410 0.242 0.246
300 0.143 0.144 0.143 0.244 0.143 0.144
400 0.111 0.111 0.111 0.144 0.111 0.111
500 0.094 0.094 0.094 0.111 0.094 0.094
600 0.084 0.084 0.084 0.095 0.084 0.084
800 0.071 0.071 0.071 0.084 0.071 0.071
1000 0.063 0.063 0.063 0.071 0.063 0.063
Name and chemical formula of compounds for the selected CT contrast agents and painkiller.
Compound
Name
Chemical
 Formula
Compound
Name
Chemical
Formula
Iotrolan C37H48I6N6O18 Ketoprofen C16H14O3
Iodixanol C35H44I6N6O15 Flurbiprofen C15H13FO2
Iohexol C19H26I3N3O9 Etodolac C17H21NO3
Ioxilan C18H24I3N3O8 İbuprofen C13H18O2
Ioversol C18H24I3N3O9 Meloxicam C14H13N3O4S2
Iomeprol C17H22I3N3O8 Diflofenac C14H11Cl2NO2
    Aspirin C9H8O4

Kerma values relative to air for the total beam interaction of the CT agents and painkillers have major values at lower energies and minor values at higher radiations in figures 1-3.

The considerated of chemical bind of target CT agent and painkiller compounds with was decreased the energy transfer by elastic scattering by nuclei of molecules, but simultaneously the incoherent scattering tends to increase with energy in figures 4-7.

The increased values of Kerma in case of CT contrast agents compounds may be attributed to the higher absorption due to presence of iodine in compounds. In case of contrast agent compounds we observed just inverse behavior as compared to painkiller compounds mixture that the Kerma is continuously increased as the I concentration increased in contrast agents compounds. The calculated air Kerma for all compounds have been shown in tables 2-4.

Table 2: MAC of painkiller compounds.
Energy
Kev
Mass attenuation coefficient
(cm2/gr)
İbuprofen Etodolac Ketoprofen Flurbiprofen Aspirin Meloxicam Diflofenac
1 2386 2499 2537 2672 2957 2733 2586
1.5 770.6 809.3 821.8 873.5 970.5 899 850.3
2 336.9 354.4 359.9 384.6 428.5 398.7 377.7
3 102.1 107.6 109.3 117.5 131.3 216.8 140.4
4 43.09 45.44 46.16 49.86 55.78 555 489.7
5 21.94 23.15 23.51 25.46 28.51 344.5 434.3
6 12.62 13.32 13.52 14.67 16.42 158.1 202.9
8 5.302 5.592 5.675 6.165 6.895 85.28 110.9
10 2.754 2.898 2.938 3.189 3.556 51.08 67.16
15 0.929 0.9684 0.9776 1.05 1.153 22.5 29.97
20 0.5013 0.5159 0.5179 0.5473 0.5891 11.85 15.9
30 0.2839 0.2864 0.2847 0.2925 0.3039 3.711 5.001
40 0.2277 0.2273 0.2249 0.2276 0.2319 1.681 2.241
50 0.2042 0.2029 0.2003 0.2011 0.203 0.6269 0.795
60 0.191 0.1893 0.1866 0.1867 0.1875 0.3669 0.4369
80 0.1751 0.1732 0.1705 0.1701 0.1701 0.2713 0.3064
100 0.1645 0.1626 0.16 0.1594 0.1591 0.2265 0.2462
150 0.1464 0.1445 0.1422 0.1415 0.141 0.1859 0.1934
200 0.1336 0.1319 0.1297 0.1291 0.1286 0.1668 0.17
300 0.1159 0.1144 0.1125 0.1119 0.1114 0.1428 0.1429
400 0.1037 0.1024 0.1007 0.1002 0.09973 0.1289 0.1284
500 0.0947 0.0934 0.0919 0.0914 0.0910 0.1111 0.1103
600 0.0875 0.0864 0.0850 0.0845 0.0841 0.0992 0.0984
800 0.0769 0.0759 0.0746 0.0742 0.0739 0.0905 0.0897
1000 0.0691 0.0682 0.0671 0.0667 0.0664 0.0836 0.08294
Table 3: Calculation air Kerma of CT contrast agents compounds.
Energy
keV
Kerma
Iotrolan Iodixanol Iohexol Ioxilan Ioversol Iomeprol
1 1.634 1.665 1.623 1.525 1.642 1.669
1.5 1.997 2.045 1.982 4.414 2.008 2.049
2 2.228 2.287 2.210 4.562 2.241 2.291
3 2.600 2.677 2.579 7.345 2.615 2.680
4 2.662 2.746 2.640 5.682 2.678 2.749
5 10.644 11.119 10.542 11.575 10.719 11.098
6 13.339 13.948 13.209 19.624 13.433 13.921
8 14.885 15.563 14.737 32.376 14.991 15.542
10 16.041 16.783 15.889 29.620 16.156 16.748
15 17.218 18.013 17.049 52.163 17.342 17.974
20 16.432 17.184 16.270 36.437 16.539 17.144
30 12.135 12.682 12.024 36.475 12.219 12.653
40 42.857 44.904 42.448 71.142 43.185 44.822
50 28.567 29.917 28.299 52.284 28.771 29.845
60 19.581 20.494 19.404 32.405 19.721 20.446
80 10.464 10.923 10.374 22.587 10.537 10.899
100 6.465 6.732 6.413 11.559 6.504 6.719
150 2.970 3.064 2.954 7.513 2.985 3.059
200 1.951 1.995 1.944 3.324 1.959 1.993
300 1.337 1.351 1.336 2.283 1.340 1.350
400 1.158 1.163 1.158 1.506 1.159 1.162
500 1.083 1.084 1.084 1.274 1.083 1.084
600 1.044 1.044 1.046 1.173 1.045 1.044
800 1.008 1.006 1.010 1.191 1.008 1.006
1000 0.992 0.989 0.994 1.122 0.992 0.989
Table 4: Calculation air Kerma of painkiller compounds.
Energy
keV
Kerma
İbuprofen Etodolac Ketoprofen Flurbiprofen Aspirin Meloxicam Diflofenac
1 0.667 0.698 0.709 0.747 0.826 0.764 0.723
1.5 0.653 0.686 0.696 0.740 0.822 0.762 0.721
2 0.644 0.678 0.688 0.735 0.819 0.762 0.722
3 0.635 0.669 0.680 0.731 0.817 1.348 0.873
4 0.577 0.608 0.618 0.667 0.746 7.427 6.553
5 0.569 0.601 0.610 0.661 0.740 8.941 11.272
6 0.565 0.596 0.605 0.657 0.735 7.077 9.082
8 0.562 0.592 0.601 0.653 0.730 9.035 11.749
10 0.566 0.596 0.604 0.655 0.731 10.499 13.805
15 0.605 0.631 0.637 0.684 0.751 14.658 19.524
20 0.674 0.693 0.696 0.735 0.791 15.921 21.362
30 0.826 0.833 0.828 0.851 0.884 10.794 14.546
40 0.932 0.930 0.921 0.932 0.949 6.881 9.173
50 0.992 0.986 0.973 0.977 0.986 3.046 3.863
60 1.025 1.016 1.002 1.002 1.006 1.969 2.345
80 1.056 1.045 1.028 1.026 1.026 1.636 1.848
100 1.069 1.057 1.040 1.036 1.034 1.472 1.600
150 1.080 1.066 1.049 1.044 1.041 1.372 1.427
200 1.084 1.070 1.052 1.047 1.043 1.353 1.379
300 1.085 1.071 1.053 1.048 1.043 1.337 1.338
400 1.086 1.072 1.054 1.049 1.044 1.350 1.344
500 1.087 1.073 1.055 1.049 1.045 1.275 1.266
600 1.087 1.073 1.055 1.049 1.045 1.231 1.222
800 1.087 1.073 1.055 1.049 1.045 1.279 1.268
1000 1.087 1.073 1.055 1.049 1.045 1.315 1.304

This study was undertaken to obtain information on MAC and air Kerma for some medical compounds. These kinds of results can be a guide for researchers working in different branches. The μ/ρ values can be used to calculate the linear attenuation coefficient for the selected CT agents and painkiller compounds. MAC and air Kerma at high photon energy were investigated since present compounds have large-scale usage in the technology of medical, nuclear science, and geosciences.

For calculating kerma factors are thought to be necessary high photon energies but at low energies influence kerma factors, especially for compounds.

Kerma has been plotted with respect to the energy the CT agents and painkiller at different photon energies as shown in figures 1-3. It can be concidered that there is an increase in MAC values since the concentration of high Z (iodine). This is because of the weight fraction of the high Z iodine increased at the compare of the other low Z elements. Moreover, it is clearly that the MAC decrease as the beam raises and this is due to the radiation can diffuse deeply in the absorber medical compounds without making any interaction. As a result the maximum values of MAC (17.38 cm2/gr) and air Kerma (71.142) occurs at 40 keV in Ioxilon. This behaviour of the Kerma can be explained due to the linear relation between MAC and Kerma.

  1. Kaewkhao J, Laopaiboon J, Chewpraditkul W. Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy. Journal of Quantitative Spectroscopy and Radiative Transfer. 2008;109:1260-1265. https://bit.ly/3eKXmfC
  2. Robert CH. Kerma-Factor Determınatıon By Charged-Partıcle Spectroscopy. 4th International Conference on Applications of nuclear techniques neutrons and their applications. https://bit.ly/3lmv8ZY
  3. Roesch WC, Attix FH. Basic Concepts 1n Radiation Dosimetry. Radiation Dosimetry. Academic Press. New York. 1968;1:1-92.
  4. Singh VP, Badiger NM, Vega-Carrillo RH. Studies on neutron and photon kerma parameters for human body organs. Nuclear Technology and Radiation Protection. 2016;31(2):128-134. https://bit.ly/3cyQjUo
  5. Singh VP, Badiger NM. Study of effective atomic numbers and electron densities, kerma of alcohols, phantom and human organs, and tissues substitutes. Nucl Technol Radiat Prot. 2013;28:137-145. https://bit.ly/38PmrlN
  6. Singh VP, Badiger NM, Kucuk N. Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: Waxes, plastics and polymers. Radioprotection. 2014;49(2):115-121. https://bit.ly/3vAySLR
  7. Manohara SR, Hanagodimath SM, Gerward L. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: studies of some biological molecules in the energy range 1 keV-20 MeV. Med Phys. 2008 Jan;35(1):388-402. doi: 10.1118/1.2815936. PMID: 18293593.
  8. Demir D, Turşucu A. Studies on mass attenuation coefficient, mass energy absorption coefficient and kerma of some vitamins. Annals of Nuclear Energy. 2012;48:17-20. https://bit.ly/3qSlPSx
  9. Kurudirek M. Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat Phys Chem. 2014b;102:139-146. https://bit.ly/3cDXsTH
  10. Kurudirek M. Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV-1 GeV. Appl Radiat Isot. 2014a Dec;94:1-7. doi: 10.1016/j.apradiso.2014.07.002. Epub 2014 Jul 15. PMID: 25061891.
  11. Jackson FD, Hawkes DJ. X-Ray Attenuation Coefficients of Elements and Mixtures. Physics Reports. 1981;70:169-233. https://bit.ly/3rYjJlr
  12. Hubbell JH. Review of photon interaction cross section data in the medical and biological context. Phys Med Biol. 1999 Jan;44(1):R1-22. doi: 10.1088/0031-9155/44/1/001. PMID: 10071870.
  13. Podgorsak, Ervin B. Review of Radiation Oncology Physics. A Handbook for Teachers and Students Department of Medical Physics McGill University Health Centre Montréal, Québec, Canada. Internatıonal Atomıc Energy Agency Vıenna, Austrıa. 2003. https://bit.ly/3qWuzqG

✨ Call for Preprints Submissions

Are you the author of a recent Preprint? We invite you to submit your manuscript for peer-reviewed publication in our open access journal.
Benefit from fast review, global visibility, and exclusive APC discounts.

Submit Now   Archive
?